584 research outputs found

    Retrospective correction of Rigid and Non-Rigid MR motion artifacts using GANs

    Full text link
    Motion artifacts are a primary source of magnetic resonance (MR) image quality deterioration with strong repercussions on diagnostic performance. Currently, MR motion correction is carried out either prospectively, with the help of motion tracking systems, or retrospectively by mainly utilizing computationally expensive iterative algorithms. In this paper, we utilize a new adversarial framework, titled MedGAN, for the joint retrospective correction of rigid and non-rigid motion artifacts in different body regions and without the need for a reference image. MedGAN utilizes a unique combination of non-adversarial losses and a new generator architecture to capture the textures and fine-detailed structures of the desired artifact-free MR images. Quantitative and qualitative comparisons with other adversarial techniques have illustrated the proposed model performance.Comment: 5 pages, 2 figures, under review for the IEEE International Symposium for Biomedical Image

    Towards a Phenomenological Understanding of Neural Networks: Data

    Full text link
    A theory of neural networks (NNs) built upon collective variables would provide scientists with the tools to better understand the learning process at every stage. In this work, we introduce two such variables, the entropy and the trace of the empirical neural tangent kernel (NTK) built on the training data passed to the model. We empirically analyze the NN performance in the context of these variables and find that there exists correlation between the starting entropy, the trace of the NTK, and the generalization of the model computed after training is complete. This framework is then applied to the problem of optimal data selection for the training of NNs. To this end, random network distillation (RND) is used as a means of selecting training data which is then compared with random selection of data. It is shown that not only does RND select data-sets capable of outperforming random selection, but that the collective variables associated with the RND data-sets are larger than those of the randomly selected sets. The results of this investigation provide a stable ground from which the selection of data for NN training can be driven by this phenomenological framework.Comment: 13 pages, 7 figure

    MedGAN: Medical Image Translation using GANs

    Full text link
    Image-to-image translation is considered a new frontier in the field of medical image analysis, with numerous potential applications. However, a large portion of recent approaches offers individualized solutions based on specialized task-specific architectures or require refinement through non-end-to-end training. In this paper, we propose a new framework, named MedGAN, for medical image-to-image translation which operates on the image level in an end-to-end manner. MedGAN builds upon recent advances in the field of generative adversarial networks (GANs) by merging the adversarial framework with a new combination of non-adversarial losses. We utilize a discriminator network as a trainable feature extractor which penalizes the discrepancy between the translated medical images and the desired modalities. Moreover, style-transfer losses are utilized to match the textures and fine-structures of the desired target images to the translated images. Additionally, we present a new generator architecture, titled CasNet, which enhances the sharpness of the translated medical outputs through progressive refinement via encoder-decoder pairs. Without any application-specific modifications, we apply MedGAN on three different tasks: PET-CT translation, correction of MR motion artefacts and PET image denoising. Perceptual analysis by radiologists and quantitative evaluations illustrate that the MedGAN outperforms other existing translation approaches.Comment: 16 pages, 8 figure

    Minimizing cardiac surgery risks in a Hepatitis C patient: Changing surgical strategy after evaluation by modern imaging technologies

    Get PDF
    Minimizing operative risks for the surgical team in infectious patients is crucial. We report on a patient suffering from Hepatitis C undergoing re-operative aortic valve and ascending aorta replacement for aortic aneurysm and paravalvular leakage due to recurrent endocarditis of a Smeloff–Cutter aortic ball prosthesis. Preoperative multi-slice computed tomography and real-time three-dimensional echocardiography proved helpful in changing operative strategy by detecting a previously unknown aortic aneurysm, assessing its extent, and demonstrating the close proximity of the right coronary artery, right ventricle, and the aortic aneurysm to the sternum. Thus, cardiopulmonary bypass was instituted via the femoral vessels, instead of conventionally. Location, morphology, and extent of the paravalvular defect could also be assessed

    Feasibility of low-dose digital pulsed video-fluoroscopic swallow exams (VFSE): effects on radiation dose and image quality

    Get PDF
    Background: Fluoroscopy is a frequently used examination in clinical routine without appropriate research evaluation latest hardware and software equipment. Purpose: To evaluate the feasibility of low-dose pulsed video-fluoroscopic swallowing exams (pVFSE) to reduce dose exposure in patients with swallowing disorders compared to high-resolution radiograph examinations (hrVFSE) serving as standard of reference. Material and Methods: A phantom study (Alderson-Rando Phantom, 60 thermoluminescent dosimeters [TLD]) was performed for dose measurements. Acquisition parameters were as follows: (i) pVFSE: 76.7 kV, 57 mA, 0.9 Cu mm, pulse rate/s 30;(ii) hrVFSE: 68.0 kV, 362 mA, 0.2 Cu mm, pictures 30/s. The dose area product (DAP) indicated by the detector system and the radiation dose derived from the TLD measurements were analyzed. In a patient study, image quality was assessed qualitatively (5-point Likert scale, 5 = hrVFSE;two independent readers) and quantitatively (SNR) in 35 patients who subsequently underwent contrast-enhanced pVFSE and hrVFSE. Results: Phantom measurements showed a dose reduction per picture of factor 25 for pVFSE versus hrVFSE images (0.0025 mGy versus 0.062 mGy). The DAP (mu Gym 2) was 28.0 versus 810.5 (pVFSE versus hrVFSE) for an average examination time of 30 s. Direct and scattered organ doses were significantly lower for pVFSE as compared to hrVFSE (P< 0.05). Image quality was rated 3.9 +/- 0.5 for pVFSE versus the hrVFSE standard;depiction of the contrast agent 4.8 +/- 0.3;noise 3.6 +/- 0.5 (P< 0.05);SNR calculations revealed a relative decreased of 43.9% for pVFSE as compared to hrVFSE. Conclusion: Pulsed VFSE is feasible, providing diagnostic image quality at a significant dose reduction as compared to hrVFSE

    Monitoring Early Response to Anti-Angiogenic Therapy: Diffusion-Weighted Magnetic Resonance Imaging and Volume Measurements in Colon Carcinoma Xenografts

    Get PDF
    Objectives: To evaluate the use of diffusion-weighted MRI (DW-MRI) and volume measurements for early monitoring of antiangiogenic therapy in an experimental tumor model. Materials and Methods: 23 athymic nude rats, bearing human colon carcinoma xenografts (HT-29) were examined before and after 6 days of treatment with regorafenib (n=12) or placebo (n=11) in a clinical 3-Tesla MRI. For DW-MRI, a single-shot EPI sequence with 9 b-values (10-800 s/mm(2)) was used. The apparent diffusion coefficient (ADC) was calculated voxelwise and its median value over a region of interest, covering the entire tumor, was defined as the tumor ADC. Tumor volume was determined using T2-weighted images. ADC and volume changes between first and second measurement were evaluated as classifiers by a receiver-operator-characteristic (ROC) analysis individually and combined using Fisher's linear discriminant analysis (FLDA). Results: All ADCs and volumes are stated as median +/- standard deviation. Tumor ADC increased significantly in the therapy group (0.76 +/- 0.09x10(-3) mm(2)/s to 0.90 +/- 0.12x10(-3) mm(2)/s;p<0.001), with significantly higher changes of tumor ADC than in the control group (0.10 +/- 0.11x10(-3) mm(2)/s vs. 0.03 +/- 0.09x10(-3) mm(2)/s;p = 0.027). Tumor volume increased significantly in both groups (therapy: 347.8 +/- 449.1 to 405.3 +/- 823.6 mm(3);p = 0.034;control: 219.7 +/- 79.5 to 443.7 +/- 141.5 mm(3);p<0.001), however, the therapy group showed significantly reduced tumor growth (33.30 +/- 47.30% vs. 96.43 +/- 31.66%;p<0.001). Area under the curve and accuracy of the ADC-based ROC analysis were 0.773 and 78.3%;and for the volume change 0.886 and 82.6%. The FLDA approach yielded an AUC of 0.985 and an accuracy of 95.7%. Conclusions: Regorafenib therapy significantly increased tumor ADC after 6 days of treatment and also significantly reduced tumor growth. However, ROC analyses using each parameter individually revealed a lack of accuracy in discriminating between therapy and control group. The combination of both parameters using FLDA substantially improved diagnostic accuracy, thus highlighting the potential of multi-parameter MRI as an imaging biomarker for non-invasive early tumor therapy monitoring

    Non-invasive estimation of split renal function from routine 68Ga-SSR-PET/CT scans

    Get PDF
    ObjectivePatients with impaired kidney function are at elevated risk for nephrotoxicity and hematotoxicity from peptide receptor radionuclide therapy (PPRT) for advanced neuroendocrine tumors. Somatostatin receptor (SSR)-PET/CT imaging is the method of choice to identify sufficient SSR expression as a prerequisite for PRRT. Therefore, our study aimed to explore whether split renal function could be evaluated using imaging data from routine SSR-PET/CT prior to PRRT.MethodsIn total, 25 consecutive patients who underwent SSR-PET/CT (Siemens Biograph mCT®) before PRRT between June 2019 and December 2020 were enrolled in this retrospective study. PET acquisition in the caudocranial direction started at 20 ± 0.5 min after an i.v. injection of 173 ± 20 MBq [68Ga]Ga-ha DOTATATE, and the kidneys were scanned at 32 ± 0.5 min p.i. The renal parenchyma was segmented semi-automatically using an SUV-based isocontour (SUV between 5 and 15). Multiple parameters including SUVmean of renal parenchyma and blood pool, as well as parenchyma volume, were extracted, and accumulation index (ACI: renal parenchyma volume/SUVmean) and total kidney accumulation (TKA: SUVmean x renal parenchyma volume) were calculated. All data were correlated with the reference standard tubular extraction rate (TER-MAG) from [99mTc]Tc-MAG3 scintigraphy and glomerular filtration rate (GFRCDK − EPI).ResultsSUVmean of the parenchymal tracer retention showed a negative correlation with TERMAG (r: −0.519, p &lt; 0.001) and GFRCDK − EPI (r: −0.555, p &lt; 0.001) at 32 min p.i. The herein-introduced ACI revealed a significant correlation (p &lt; 0.05) with the total tubular function (r: 0.482), glomerular renal function (r: 0.461), split renal function (r: 0.916), and absolute single-sided renal function (r: 0.549). The mean difference between the split renal function determined by renal scintigraphy and ACI was 1.8 ± 4.2 % points.ConclusionThis pilot study indicates that static [68Ga]Ga-ha DOTATATE PET-scans at 32 min p.i. may be used to estimate both split renal function and absolute renal function using the herein proposed “Accumulation Index” (ACI)

    Dynamic and Static Magnetic Resonance Angiography of the Supra-aortic Vessels at 3.0 T Intraindividual Comparison of Gadobutrol, Gadobenate Dimeglumine, and Gadoterate Meglumine at Equimolar Dose

    Get PDF
    Purpose: The purpose of this study was the intraindividual comparison of a 1.0 M and two 0.5 M gadolinium-based contrast agents (GBCA) using equimolar dosing in dynamic and static magnetic resonance angiography (MRA) of the supra-aortic vessels. Materials and Methods: In this institutional review board-approved study, a total of 20 healthy volunteers (mean +/- SD age, 29 +/- 6 years) underwent 3 consecutive supra-aortic MRA examinations on a 3.0 T magnetic resonance system. The order of GBCA (Gadobutrol, Gadobenate dimeglumine, and Gadoterate meglumine) was randomized with a minimum interval of 48 hours between the examinations. Before each examination and 45 minutes after each examination, circulatory parameters were recorded. Total GBCA dose per MRA examination was 0.1 mmol/kg with a 0.03 mmol/kg and 0.07 mmol/kg split for dynamic and static MRA, respectively, injected at a rate of 2 mL/s. Two blinded readers qualitatively assessed static MRA data sets independently using pairwise rankings (superior, inferior, and equal). In addition, quantitative analysis was performed with signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) evaluation as well as vessel sharpness analysis of static MRA using an in-house-developed semiautomated tool. Dynamic MRA was evaluated for maximal SNR. Statistical analysis was performed using the Cohen kappa, the Wilcoxon rank sum tests, and mixed effects models. Results: No significant differences of hemodynamic parameters were observed. In static MRA, Gadobutrol was rated superior to Gadoterate meglumine (P 0.05). Maximal SNR in dynamic MRA using Gadobutrol was significantly higher than both comparators at the level of the proximal and distal internal carotid artery (P < 0.05 and P < 0.05; P < 0.05 and P < 0.05). Conclusions: At equimolar doses, 1.0 M Gadobutrol demonstrates higher SNR/CNR than do Gadobenate dimeglumine and Gadoterate meglumine, with superior image quality as compared with Gadoterate meglumine for dynamic and static carotid MRA. Despite the shortened bolus with Gadobutrol, no blurring of vessel edges was observed

    Diagnosing and mapping pulmonary emphysema on X-ray projection images

    Get PDF
    To assess whether grating-based X-ray dark-field imaging can increase the sensitivity of X-ray projection images in the diagnosis of pulmonary emphysema and allow for a more accurate assessment of emphysema distribution. Lungs from three mice with pulmonary emphysema and three healthy mice were imaged ex vivo using a laser-driven compact synchrotron X-ray source. Median signal intensities of transmission (T), dark-field (V) and a combined parameter (normalized scatter) were compared between emphysema and control group. To determine the diagnostic value of each parameter in differentiating between healthy and emphysematous lung tissue, a receiver-operating-characteristic (ROC) curve analysis was performed both on a per-pixel and a per-individual basis. Parametric maps of emphysema distribution were generated using transmission, dark-field and normalized scatter signal and correlated with histopathology. Transmission values relative to water were higher for emphysematous lungs than for control lungs (1.11 vs. 1.06, p<0.001). There was no difference in median dark-field signal intensities between both groups (0.66 vs. 0.66). Median normalized scatter was significantly lower in the emphysematous lungs compared to controls (4.9 vs. 10.8, p<0.001), and was the best parameter for differentiation of healthy vs. emphysematous lung tissue. In a per-pixel analysis, the area under the ROC curve (AUC) for the normalized scatter value was significantly higher than for transmission (0.86 vs. 0.78, p<0.001) and dark-field value (0.86 vs. 0.52, p<0.001) alone. Normalized scatter showed very high sensitivity for a wide range of specificity values (94% sensitivity at 75% specificity). Using the normalized scatter signal to display the regional distribution of emphysema provides color-coded parametric maps, which show the best correlation with histopathology. In a murine model, the complementary information provided by X-ray transmission and dark-field images adds incremental diagnostic value in detecting pulmonary emphysema and visualizing its regional distribution as compared to conventional X-ray projections
    corecore